Abstract

Polylactic Acid is a sustainable, compostable bioplastic that requires specific geoenvironmental conditions for degradation. The complexity of managing the PLA waste has limited the scope of its seamless application. There have been a significant number of studies exploring PLA degradation. Majorly they have explored degradability as a material property with limited discussions on the fundamental factors affecting degradation. The knowledge of the influence of biotic and abiotic factors and their complex interplay is critical for enhancing PLA degradation research, specifically accelerated degradation. This understanding is necessary for PLA waste upcycling and generating industrial-scale value-added products. Using the PRISMA framework, a database of articles on PLA degradation (1974-2023) has been created with each entry being annotated with 11 critical parameters depending on the scale and scope of the research. Abiotic hydrolysis, biotic hydrolysis and assimilation of PLA were discussed in detail with information on experiment design analytical techniques and background mechanisms to achieve systematic recommendations. Enzymes responsible for PLA degradation have been categorised and catalogued. The review highlights the need for future research related to PLA degradation in terms of molecular mechanisms of enzymatic degradation, bioengineering enzymes for accelerating degradation, and mathematical models for predicting degradation kinetics in complex environmental conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.