Abstract

Biodegradation of poly(lactic) acid (PLA) has been studied extensively, but there is only limited knowledge about the effect of irradiation sterilization on its biodegradability. The aim of this work was to examine the aerobic biodegradation of gamma and electron beam irradiated PLA films along with the effects of aging (3, 6, and 9 months of storage) using a direct measurement respirometric system. Commercial PLA film was exposed to a simulated aerobic compost environment, and its mineralization was 96 % at day 85. Gamma and electron beam irradiation affected the biodegradation of the post-irradiated PLA film. Aging irradiated PLA had some potential to increase the biodegradation rate, as the average value of mineralization after 9 months of storage was higher than for the non-irradiated PLA. Comparison of the effect of storage time on the biodegradability of PLA showed a significant increase in biodegradation of the gamma irradiated PLA after 3 months (70 %) and 9 months of storage (130 %). Similarly, there was a significant difference in the biodegradation of electron beam irradiated PLA between 3 months (68 %) and 9 months of storage (120 %). Due to the priming effect, the percent mineralization of gamma irradiated and E-beam irradiated PLA after 9 months of storage was greater than 100 %. Both non-irradiated and irradiated PLA films can be considered biodegradable plastics since they showed mineralization percentage larger than 90 % of that of the positive control at the end of the test period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call