Abstract

In this study, we investigated the feasibility of using electroencephalogram (EEG) signals to differentiate between four distinct subject-driven cognitive states: resting state, narrative memory, music, and subtraction tasks. EEG data were collected from seven healthy male participants while performing these cognitive tasks, and the raw EEG signals were transformed into time–frequency maps using continuous wavelet transform. Based on these time–frequency maps, we developed a convolutional neural network model (TF-CNN-CFA) with a channel and frequency attention mechanism to automatically distinguish between these cognitive states. The experimental results demonstrated that the model achieved an average classification accuracy of 76.14% in identifying these four cognitive states, significantly outperforming traditional EEG signal processing methods and other classical image classification algorithms. Furthermore, we investigated the impact of varying lengths of EEG signals on classification performance and found that TF-CNN-CFA demonstrates consistent performance across different window lengths, indicating its strong generalization capability. This study validates the ability of EEG to differentiate higher cognitive states, which could potentially offer a novel BCI paradigm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.