Abstract
2Sound decoding is important for patients with sensory loss, such as the blind. Previous studies on sound categorization were conducted by estimating brain activity using univariate analysis or voxel-wise multivariate decoding methods and suggested some regions were sensitive to auditory categories. It is proposed that feedback connections between brain areas may facilitate auditory object selection. Therefore, it is important to explore whether functional connectivity among regions can be used to decode sound category. In this study, we constructed whole-brain functional connectivity patterns when subjects perceived four different sound categories and combined them with multivariate pattern classification analysis for sound decoding. The categorical discriminative networks and regions were determined based on the weight maps. Results showed that a high accuracy in multi-category classification was obtained based on the whole-brain functional connectivity patterns and the results were verified by different preprocessing parameters. Insight into the category discriminative functional networks showed that contributive connections crossed the left and right brain, and ranged from primary regions to high-level cognitive regions, which provide new evidence for the distributed representation of auditory object. Further analysis of brain regions in the discriminative networks showed that superior temporal gyrus and Heschl's gyrus significantly contributed to discriminating sound categories. Together, the findings reveal that functional connectivity based multivariate classification method provides rich information for auditory category decoding. The successful decoding results implicate the interactive properties of the distributed brain areas in auditory sound representation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have