Abstract

How the activity of populations of cortical neurons generates coordinated multijoint actions of the arm, wrist, and hand is poorly understood. This study combined multielectrode recording techniques with full arm motion capture to relate neural activity in primary motor cortex (M1) of macaques (Macaca mulatta) to arm, wrist, and hand postures during movement. We find that the firing rate of individual M1 neurons is typically modulated by the kinematics of multiple joints and that small, local ensembles of M1 neurons contain sufficient information to reconstruct 25 measured joint angles (representing an estimated 10 functionally independent degrees of freedom). Beyond showing that the spiking patterns of local M1 ensembles represent a rich set of naturalistic movements involving the entire upper limb, the results also suggest that achieving high-dimensional reach and grasp actions with neuroprosthetic devices may be possible using small intracortical arrays like those already being tested in human pilot clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.