Abstract

Efficient water transport from soil to leaves sustains stomatal opening and steady-state photosynthesis. The aboveground portion of this pathway is well-described, yet the roots and their connection with the soil are still poorly understood due to technical limitations. Here we used a novel rehydration technique to investigate changes in the hydraulic pathway between roots and soil and within the plant body as individual olive plants were subjected to a range of water stresses. Whole root hydraulic resistance (including the radial pathway from xylem to the soil-root interface) constituted 81% of the whole-plant resistance in unstressed plants, increasing to >95% under a moderate level of water stress. The decline in this whole root hydraulic conductance occurred in parallel with stomatal closure and contributed significantly to the reduction in canopy conductance according to a hydraulic model. Our results demonstrate that losses in root hydraulic conductance, mainly due to a disconnection from the soil during moderate water stress in olive plants, are profound and sufficient to induce stomatal closure before cavitation occurs. Future studies will determine whether this core regulatory role of root hydraulics exists more generally among diverse plant species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call