Abstract

Abstract Bitterling fishes (Subfamily: Acheilognathinae) spawn in the gills of living freshwater mussels and obligately depend on the mussels for reproduction. On the Matsuyama Plain, Japan, populations of unionid mussels—Pronodularia japanensis, Nodularia douglasiae, and Sinanodonta lauta—have decreased rapidly over the past 30 years. Simultaneously, the population of a native bitterling fish, Tanakia lanceolata, which depends on the three unionids as a breeding substrate, has decreased. Furthermore, a congeneric bitterling, Tanakia limbata, has been artificially introduced, and hybridisation and genetic introgression occur between them. Here, we hypothesised that decline of the unionids has enhanced this invasive hybridisation through competition for the breeding substrate. Three study sites were set in three streams on the Matsuyama Plain. We collected adult bitterling fishes (native T. lanceolata, introduced T. limbata, and foreign Rhodeus ocellatus ocellatus) once a week from April to October 2013 to measure their densities in streams and to examine seasonal differences in female ovipositor length, which elongates in the breeding season. Simultaneously, we set quadrats and captured unionids and measured environmental conditions. Each unionid individual was kept separately in its own aquarium to collect ejected bitterling eggs/larvae. Tanakia eggs and larvae were genotyped using six microsatellite markers and the mitochondrial cytochrome b gene. Introduced T. limbata was more abundant, had a longer breeding period, and produced more juveniles than native T. lanceolata. Hybrids between the two species occurred at all sites, and in total 101 of the 837 juveniles genotyped were hybrids. The density of P. japanensis was low, at most 0.42 individuals/m2. Nodularia douglasiae and S. lauta have nearly or totally disappeared from these sites. Hybrid clutches of Tanakia species occurred more frequently where the local density of P. japanensis was low. Mussels were apparently overused and used simultaneously by three species of bitterlings. Decline of freshwater unionid populations has enhanced hybridisation of native and invasive bitterling fishes through increasing competition for breeding substrate. We showed that rapid decline of host mussel species and introduction of an invasive congener have interacted to cause a rapid decline of native bitterling fish. Degradation of habitat and the introduction of invasive species interact to cause a cascade of extinctions in native species. In our study, obligate parasite species are threatened because the host species are disappearing, which means there is a serious threat of coextinction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call