Abstract
BackgroundAppropriate postoperative pain management contributes to earlier mobilization, shorter hospitalization, and reduced cost. The under treatment of pain may impede short-term recovery and have a detrimental long-term effect on health. This study focuses on Patient Controlled Analgesia (PCA), which is a delivery system for pain medication. This study proposes and demonstrates how to use machine learning and data mining techniques to predict analgesic requirements and PCA readjustment.MethodsThe sample in this study included 1099 patients. Every patient was described by 280 attributes, including the class attribute. In addition to commonly studied demographic and physiological factors, this study emphasizes attributes related to PCA. We used decision tree-based learning algorithms to predict analgesic consumption and PCA control readjustment based on the first few hours of PCA medications. We also developed a nearest neighbor-based data cleaning method to alleviate the class-imbalance problem in PCA setting readjustment prediction.ResultsThe prediction accuracies of total analgesic consumption (continuous dose and PCA dose) and PCA analgesic requirement (PCA dose only) by an ensemble of decision trees were 80.9% and 73.1%, respectively. Decision tree-based learning outperformed Artificial Neural Network, Support Vector Machine, Random Forest, Rotation Forest, and Naïve Bayesian classifiers in analgesic consumption prediction. The proposed data cleaning method improved the performance of every learning method in this study of PCA setting readjustment prediction. Comparative analysis identified the informative attributes from the data mining models and compared them with the correlates of analgesic requirement reported in previous works.ConclusionThis study presents a real-world application of data mining to anesthesiology. Unlike previous research, this study considers a wider variety of predictive factors, including PCA demands over time. We analyzed PCA patient data and conducted several experiments to evaluate the potential of applying machine-learning algorithms to assist anesthesiologists in PCA administration. Results demonstrate the feasibility of the proposed ensemble approach to postoperative pain management.
Highlights
Appropriate postoperative pain management contributes to earlier mobilization, shorter hospitalization, and reduced cost
This study evaluates the performance of learning algorithms in analgesic consumption prediction based on predictive accuracy instead of the performance measure used in ordinal classification [32]
Because decision tree-based learning performed the best in analgesic consumption prediction, this study only focuses on the analysis of decision tree-based learning in Patient Controlled Analgesia (PCA) readjustment prediction
Summary
Appropriate postoperative pain management contributes to earlier mobilization, shorter hospitalization, and reduced cost. The under treatment of pain may impede short-term recovery and have a detrimental long-term effect on health. This study focuses on Patient Controlled Analgesia (PCA), which is a delivery system for pain medication. Progress in medical science has gradually made people more aware of the importance of pain management. Patient-controlled analgesia (PCA) is a pain medication delivery system that enables effective and flexible pain treatment by allowing patients to adjust the dosage of anesthetics. According to previous research [4,5], PCA has become one of the most effective techniques for treating postoperative analgesia. PCA is widely used in hospitals for the management of postoperative pain, especially for major surgeries
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have