Abstract

Grafting could potentially become an important part of integrated pest management programs in vegetable crops in the United States due to increased pathogen densities, reliance on pathogen susceptible varieties, increased use of organic and high tunnel production systems, limited land or input resources, value-added benefits, and the loss of, or regulatory restrictions on, soil fumigants. Adoption of this technology imposes additional costs on growers due to significantly higher grafted transplant prices, but associated yield improvements are potentially more than sufficient to offset the higher transplant costs. Therefore, the economic impact of the technology adoption depends highly on the specific circumstances of each grower. In this study, we propose a decision tool for growers to facilitate grafting technology adoption. We demonstrate an application of the proposed tool to a scenario based on real-life data for the open-field production of tomato (Solanum lycopersicum). The results show that based on a 30% loss in marketable yields due to disease pressure in nongrafted systems, yield improvements in the grafted system with resistant rootstock were sufficient to offset higher transplant and harvesting costs and resulted in higher net revenues. Net revenue estimates were $7126/acre in the nongrafted system and $8374/acre in the grafted system. The sensitivity analysis resulted in positive net revenues in the grafted system ranging from $108 to $12,328 per acre. Estimated marketable yield required in the grafted system to breakeven with the nongrafted system was 73,880 or 19,980 lb/acre more than marketable yield in the nongrafted system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call