Abstract
Applying higher nitrogen (N) rates than required for optimum potato (Solanum tuberosum L.) growth leads to economic and environmental losses. The extent to which the N rate associated with maximum potato yields differs from that maximizing net revenue (NR) or potato specific gravity is not fully understood. The objectives of this three-year study (2013–2015) conducted at five sites in three Canadian provinces (MB-1; MB-2; QC-1; QC-2; PEI) (15 site-years) were to: (i) assess potato marketable yield, NR, and specific gravity responses to increasing N application; (ii) calculate the N rate maximizing marketable (Nmax) yield and NR using different statistical models. The year, N fertilizer, and their interaction were significant on marketable yield and NR except at the MB-1 site where no significant effect of N was observed. No significant yield increases were observed at a N rate above 60 kg N ha−1 at four site-years and above 120 kg N ha−1 at five site-years, implying that the current recommended N rate could be reduced. All models fitted the marketable and NR data equally based on R2, mean bias error or root mean square error and resulted in comparable predicted yield and NR values. However, Nmax values were different depending on the model with higher values being predicted by the quadratic- (161.4 to 191.9 kg N ha−1) and the quadratic plateau models (60 to 191.9 kg N ha−1), while lower Nmax values were obtained with linear plateau- (60.6 to 129.8 kg N ha−1) and Mitscherlich–Baule plateau models (60.9 to 130. 9 kg N ha−1). Nitrogen rate maximizing NR was on average 4% lower than the N rate maximizing marketable yields, except at one site where it was higher by 26 kg N ha−1 when the quadratic plus plateau model was used. Specific gravity tended to decrease with the N rate. Our study confirms trade-offs between the N rate maximizing yields or NR with that maximizing specific gravity. Nitrogen rate maximizing marketable yield and NR varies depending on the selected model.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.