Abstract

Every animal must be able to adapt to threats and changes to their environment that could affect their survival. Some ‘social’ animals, such as honeybees and ants, go further than this, and also transmit information about a threat—and how to survive it—to other members of their species. This helpful behavior is now known to occur to some extent even in animals that have not been considered to be social, like the Drosophila species of fruit fly. Parasitoid wasps lay their eggs in the larvae and pupae of certain insect species. When the wasp eggs hatch, they feed on the host insect, eventually killing it. Drosophila fruit flies have evolved various behaviors to protect their offspring from these wasps. For example, female fruit flies reduce the number of eggs they lay when they are in the presence of a wasp. Kacsoh, Bozler et al. exposed female flies to wasps for a day. These flies produced fewer eggs than flies that were not exposed to wasps and continued to lay fewer eggs for 24 hours after the wasps were removed. Introducing these flies to ‘naive’ flies that had not encountered a wasp caused the naive flies to produce fewer eggs as well. After ruling out several possible ways that the wasp-exposed flies might ‘teach’ the naive flies to produce and lay fewer eggs, Kacsoh, Bozler et al. found that naive flies cannot learn this behavior when they are blind. In addition, exposed flies cannot instruct other flies of the threat if their wings are absent or deformed. These and other findings, therefore, suggest that information about the wasp threat is transmitted through visual cues that involve the wings. Kacsoh, Bozler et al. found that the flies must have certain brain circuits associated with memory and learning to be able to teach others and to reduce the numbers of eggs they lay after the wasp has been removed. This suggests that signals from this brain region must be continually sent out to alter the physiology of the developing eggs in order to maintain the lower rate of egg laying; understanding how flies use visual cues for communication and how the brain signals to the ovary remain key challenges for future work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.