Abstract

We analytically studied the block length effect (BLE) of decision-aided maximum likelihood (DA ML) carrier phase estimation in coherent optical phase-modulated systems. The results agree well with the trends found using extensive Monte Carlo simulations. In order to eliminate the BLE and accurately recover the carrier phase, an adaptive decision-aided (DA) receiver is proposed that does not require knowledge of the statistical characteristics of the carrier phase, or any parameter to be preset. The simulation results show that using the adaptive DA receiver, the maximum tolerance ratio of the linewidth per laser to symbol rate (?vT) at a bit error rate (BER) = 10-4 has been increased to 2.5 × 10-4, 4.1 × 10-5, and 9.5 × 10-6, respectively, for quadrature-, 8- and 16-phase-shift keying formats. The ratio (?vT) of the adaptive DA receiver in 16 quadrature amplitude modulation (QAM) is decreased to 2 × 10-5 due to the constellation penalty from 2.5 × 10-5 by using DA ML with optimum memory length, though it consistently performs well without optimizing any parameters as in DA ML. The phase error variance of the adaptive DA receiver is also analytically investigated. In addition, an analog-to-digital converter with bit resolution higher than 4 bits is shown to be sufficient to implement our adaptive DA receiver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call