Abstract

Seed development is an important event in plant life cycle that has interested humankind since ages, especially in crops of economic importance. Pigeonpea is an important grain legume of the semi-arid tropics, used mainly for its protein rich seeds. In order to understand the transcriptional programming during the pod and seed development, RNA-seq data was generated from embryo sac from the day of anthesis (0 DAA), seed and pod wall (5, 10, 20 and 30 DAA) of pigeonpea variety “Asha” (ICPL 87119) using Illumina HiSeq 2500. About 684 million sequencing reads have been generated from nine samples, which resulted in the identification of 27,441 expressed genes after sequence analysis. These genes have been studied for their differentially expression, co-expression, temporal and spatial gene expression. We have also used the RNA-seq data to identify important seed-specific transcription factors, biological processes and associated pathways during seed development process in pigeonpea. The comprehensive gene expression study from flowering to mature pod development in pigeonpea would be crucial in identifying candidate genes involved in seed traits directly or indirectly related to yield and quality. The dataset will serve as an important resource for gene discovery and deciphering the molecular mechanisms underlying various seed related traits.

Highlights

  • Pigeonpea is an important grain legume in the semi-arid regions of Asia and Africa where it plays an important role in human nutrition and soil health

  • All raw sequencing data have been deposited in NCBI Sequence Read Archive (SRA) database with the BioProject ID-PRJNA344973

  • To understand the well-orchestrated processes involved in transition during seed/pod wall development from embryo sac, we studied temporal patterns of gene expression in the developing seed and pod wall spanning 0 to 30 days after anthesis (DAA)

Read more

Summary

Introduction

Pigeonpea is an important grain legume in the semi-arid regions of Asia and Africa where it plays an important role in human nutrition and soil health. Pigeonpea seeds are rich sources of proteins, carbohydrates, fibers and micronutrients such as iron, selenium, magnesium, calcium, phosphorus, potassium etc. Legume researchers working in pigeonpea improvement are striving to understand the genetic control related to seed development, seed protein content, pod filling, grain weight etc. Genomics-assisted breeding can greatly accelerate these efforts by identifying the candidate genes and the genomic regions for targeted traits [1, 2]. Majority of PLOS ONE | DOI:10.1371/journal.pone.0164959 October 19, 2016

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call