Abstract

Block copolymer thin films with distinct morphologies are prepared by spin casting a nominally lamellar assay of poly(styrene-block-ethylene oxide) from a variety of solvents with and without salt doping. The 3-D morphologies of free-standing thin-film regions, which are obtained by casting directly onto holey substrates, are investigated in detail using various energy-filtering transmission electron microscopy techniques and by electron tomography. Surface characterization is achieved by atomic force microscopy. Our results demonstrate that in order to fully characterize the unique 3-D morphologies of the block copolymer thin films, a multi-method approach is required. When casting from a binary solvent, an unexpected layered honeycomb-type morphology is revealed, which likely results from an expansion of the poly(ethylene oxide) phase. A dramatic effect of selective cation coordination on the morphology of the as-cast block copolymer films is also directly observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.