Abstract
Amyloid fibril formation by proteins and their deposition in cells and tissues are associated with several amyloid-based disorders. Understanding the mechanism of amyloid fibril formation is thus of the utmost importance for the designing ligands that could prevent or inhibit the fibrillation process and help to treat of such disorders. We describe the stimulatory effect of sodium dodecyl benzenesulfonate (SDBS) on insulin amyloid fibrillation at pH 2.0 and the characterization of SDBS-induced insulin aggregation using spectroscopy and microscopy. We found that SDBS induced amyloid-like aggregates of insulin at sub-micellar (0.1–1.2 mM), but not post-micellar (≥2.0 mM) concentrations. The amyloid fibrillation of insulin induced by SDBS was kinetically rapid and escaped the lag phase. Far-UV CD findings suggested that the α-helical content of insulin transformed into cross-β structure and mixed α and β structures when incubated with sub-micellar and post-micellar SDBS concentrations, respectively. The overall results indicated that low, but not high SDBS concentrations induce amyloid-like insulin aggregates and fibrils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.