Abstract

As one of the most important lead-free piezoelectric candidates, potassium sodium niobate [(K, Na)NbO3, KNN] has gained popularity due to its attractive functional properties, which are much improved by chemical modifications. However, there still remains an insufficient understanding of how these dopants influence the structure and performance of KNN ceramics. Herein, we comparatively studied a series of changes triggered by introducing (Bi0.5Na0.5)ZrO3, BaZrO3, and PbZrO3 into the KNN matrix. The analysis highlights their different roles in modulating the orthorhombic-tetragonal phase transition temperature (TO-T) by considering discrepancies in the electronegativity and radius among Bi3+, Ba2+, and Pb2+ ions. The synergistic effects of the large electronegativity and the small radius of the Bi3+ ion are the key to regulating TO-T, which is relatively unaffected by Pb2+ and Ba2+ ions. Based on experimental results and first-principles calculations, a multi-scale model is proposed to summary the general law of how the electronegativity and radius of the A-site ion in AZrO3-type dopants synergistically affect the phase structure, ferroelectric domains, and electrical properties of KNN ceramics. Therefore, this work helps understand the role of chemical dopants in the structure and performance of KNN ceramics and promote the future composition design for high performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call