Abstract

Recognition and deciphering of the early history of fault zones is difficult because younger fabrics commonly overprint and obscure older ones. The Hollow–Greendale Fault system in the Avalon terrane of the northern Antigonish Highlands in mainland Nova Scotia has suffered many episodes of motion in the Paleozoic during development of the Appalachian orogen. Field relationship and petrographic observations indicate that its Neoproterozoic history is preserved as ca. 610 Ma NE- and NW-trending ductile shear zones within the Georgeville Group contact aureole of the intrusive syn- to late-tectonic Greendale Complex. Kinematic indicators within the NE-trending shear zone along the southwestern contact indicate dextral shear and are compatible with dextral shear indicators within the Greendale Complex and with the orientation of coeval regional F 1 fold structures within the Antigonish Highlands. The NW-trending shear zone along the northeastern contact represents either a step-over fault within a dextral shear zone or a zone of localized transpression associated with the emplacement of the Greendale Complex. Local preservation of Neoproterozoic shear zone fabrics within the Georgeville Group host rocks is attributed to the shielding effects of the proximal Greendale Complex, which acted as a rigid unit during Paleozoic deformation so that subsequent motion along the Hollow Fault was partitioned along the northeastern and southwestern contact of the complex. The Neoproterozoic history, combined with paleocontinental reconstructions, indicates that the Hollow–Greendale fault system was part of an important regional strike-slip fault zone within a volcanic arc regime along the periphery of Gondwana ( Murphy et al., 1999a,b).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call