Abstract

Analogue modelling of wrench tectonics typically utilizes a rigid basement with a velocity discontinuity under a brittle or brittle-viscous cover, such as in Riedel experiments, which confines fault localization in the overlaying model. However, such a set-up is hardly compatible with modeling brittle-ductile systems such as the upper and lower crust or a brittle sedimentary cover overlying a viscous evaporitic layer. To achieve a more realistic experimental approach, Bruno Vendeville designed an alternative experimental set-up decoupling the basement from the brittle overburden with a viscous layer in which the basement is not involved. In this configuration, strike-slip movement is driven laterally rather than from the base up, facilitated by “weak zones” that preferentially localize the deformation during shortening and enable sliding between compartments. This original approach provides greater flexibility for modeling complex strike-slip settings, allowing for more freedom for strike-slip structures to form and evolve through time.Although the experiments described in this work were conducted in the late 1990s, the co-authors have chosen to revisit and adapt this earlier work for this Special Issue to underscore Bruno's influence on another aspect of salt tectonics and his pioneering foresight in the field of analogue modelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.