Abstract

Identifying the microbial community and their functional potential from different stages of common effluent treatment plants (CETP) can enhance the efficiency of wastewater treatment systems. In this study, wastewater metagenomes from 8 stages of CETP were screened for microbial diversity and gene profiling along with their corresponding degradation activities. The microbial community displayed 98.46% of bacterial species, followed by Eukarya (0.10%) and Archaea 0.02%. At the Phylum level, Proteobacteria (28.8%) was dominant, followed by Bacteroidetes (16.1%), Firmicutes (11.7%), and Fusobacteria (6.9%) which are mainly capable of degrading the aromatic compounds. Klebsiella pneumoniae, Wolinella succinogenes, Pseudomonas stutzeri, Desulfovibrio vulgaris, and Clostridium sticklandii were the most prevalent species. The functional analysis further demonstrated the presence of enzymes linked with genes/pathways known to be involved in the degradation/metabolization of aromatic compounds like benzoate, bisphenol, 1,2-dichloroethane phenylalanine. This information was further validated with the whole genome analysis of the bacteria isolated from the CETP. We anticipate that integrating both shotgun and whole-genome analyses can reveal the rich reservoir for novel enzymes and genes present in CETP effluent that can contribute to designing efficient bioremediation strategies for the environment in general CETP system, in particular.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call