Abstract

Dutasteride is a pharmacologically important drug employed to treat prostate cancer. Alpha-2-macroglobulin (α2M) is the primary proteinase inhibitor and is abundant in vertebrate plasma. Previous studies have shown that α2M levels were down regulated in prostate cancer. Our results of functional assay shows 50% decrease in the antiproteolytic potential ofα2Mupon its interaction with dutasteride. Fluorescence quenching revealed that dutasteride binds with α2M via static mechanism, resulting in the formation of dutasteride-α2M complex. Synchronous fluorescence studies suggest alteration in the microenvironment around tryptophan residues. Changes in the UV–visible spectra hints at formation of complex between the drug and protein. Secondary structural perturbations in α2M are confirmed by circular dichroism studies. Molecular docking discloses the involvement of hydrogen bonding during the interaction process and suggests the site of interaction of dutasteride on α2M monomer as Asn173, Lys171, Asp1178, Lys1236, His1182, Lys1177, Ser1180 and Lys1240.Isothermal titration calorimetry affirms the binding process to be spontaneous and exothermic. The results of this study may potentially be important should it be shown that dutasteride interacts with α2M under physiological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.