Abstract

We previously identified an event in the solar timeline that appeared to play a role in how sunspot Cycle 23 (SC23) transitioned into sunspot Cycle 24 (SC24). The timeframe for this transition was rapid, taking place over a very short time and perhaps in a time as short as a single solar rotation. Further, we inferred that the transition observed was a critical moment for the Sun’s global-scale magnetic field as it was being manifest in the spatially and temporally overlapping magnetic systems belonging to the Sun’s 22-year (Hale) magnetic cycle. These events have been dubbed as Hale Cycle terminations, or ‘terminators’ for short. Subsequent exploration of the sunspot record revealed a relationship between terminator separation (as a measure of overlap in the Hale Cycles) and the upcoming sunspot cycle amplitude using a Hilbert transform. Finally, we extrapolated the contemporary sunspots data’s Hilbert phase function to project the occurrence of the SC24 terminator in Mid-2020 and inferred that this would result in a large sunspot Cycle 25 (SC25) amplitude. This paper presents observational evidence that the end of SC24 and the initial growth of SC25 followed a terminator that occurred in mid-December 2021 (approximately 12/13/2021). Using this December 2021 terminator identification we can finalize our earlier preliminary forecast of SC25 amplitude - anticipating a peak total monthly sunspot number of 184±17 with 68% confidence, and 184±63 with 95% confidence. Finally, we use other terminator-related superposed epoch analyses developed in parallel work we project the timing of SC25 sunspot maximum to occur between late 2023 to mid 2024.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.