Abstract
New estimates of the solar cycle length are calculated from an up‐to‐date monthly sunspot record using a novel but mathematically rigorous method involving multiple regression, Fourier approximation, and analytical expressions for the first derivative based on calculus techniques. The sensitivity of the estimates to smoothing are examined and the analysis is used to identify possible systematic changes in the sun. The solar cycle length analysis indicates a pronounced change in the sun around 1900, before which the estimates fluctuate strongly and after which the estimates show little variability. There have been speculations about an association between the solar cycle length and Earth's climate, however, the solar cycle length analysis does not follow Earth's global mean surface temperature. A further comparison with the monthly sunspot number, cosmic galactic rays and 10.7 cm absolute radio flux since 1950 gives no indication of a systematic trend in the level of solar activity that can explain the most recent global warming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.