Abstract
Abstract Functional specialization of tissue resident macrophages occurs through environmental signals controlling activity and/or expression of transcription factors. Kupffer cells are resident macrophages in the hepatic sinusoids and have critical roles in the innate immune response and iron metabolism. Here, we characterize transcriptomic and epigenetic changes in repopulating liver macrophages following acute Kupffer cell depletion as a means to infer signaling pathways and transcription factors that promote Kupffer cell differentiation. Nr1h3 encoding LXRα is rapidly and highly induced in repopulating liver macrophages, suggesting its induction plays a crucial role in Kupffer cell differentiation. Restricted deletion of Nr1h3 in Kupffer cells reveal that it is required for shaping the Kupffer cell-specific enhancer landscape. Further, we obtain evidence that combinatorial interactions of DLL4 and TGF-β/BMP produced by sinusoidal endothelial cells and endogenous LXR ligands are required for the induction and maintenance of Kupffer cell identity. DLL4 regulation of RBPJ through Notch signaling plays a key role in activating poised enhancers to rapidly induce LXRα and other Kupffer cell lineage-determining factors. These factors in turn reprogram the repopulating liver macrophage enhancer landscape to converge on that of the original resident Kupffer cells. Using molecules which mimic these liver environment signals, we show that it is possible to induce Kupffer cell-specific genes in mouse bone marrow progenitor cells and human monocytes in vitro. Collectively, these findings provide a framework for understanding how macrophage progenitor cells acquire tissue-specific phenotypes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.