Abstract
Natural language processing techniques have increased the volume and variety of text data that can be analyzed. The aim of this study was to identify the positive and negative topical sentiments among diet, diabetes, exercise, and obesity tweets. Using a sequential explanatory mixed-method design for our analytical framework, we analyzed a data corpus of 1.7 million diet, diabetes, exercise, and obesity (DDEO)-related tweets collected over 12 months. Sentiment analysis and topic modeling were used to analyze the data. The results show that overall, 29% of the tweets were positive, and 17% were negative. Using sentiment analysis and latent Dirichlet allocation (LDA) topic modeling, we analyzed 800 positive and negative DDEO topics. From the 800 LDA topics-after the qualitative and computational removal of incoherent topics-473 topics were characterized as coherent. Obesity was the only query health topic with a higher percentage of negative tweets. The use of social media by public health practitioners should focus not only on the dissemination of health information based on the topics discovered but also consider what they can do for the health consumer as a result of the interaction in digital spaces such as social media. Future studies will benefit from using multiclass sentiment analysis methods associated with other novel topic modeling approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.