Abstract

Cancer is a disease reliant on the generation of mutations and the subsequent selection of those subpopulations endowed with the greatest fitness advantage. Beginning with a heterogeneous landscape of somatic alterations, various selective pressures acting on a tumor can shape the way it evolves. In this review, we first discuss the current bioinformatics tools available to tease apart the heterogeneous nature of a tumor and second consider the impact that evolutionary forces have on sculpting a tumor. Neighboring subclones may alter the microenvironment cultivating either cooperation or competition between clonal populations. Additionally, the harsh environment brought about by therapy and the immune system may force adaptation. Finally, we examine recent analyses focused on precancerous samples, which help to reveal clonal selection occurring during the earliest stages of tumor development, as well as work that has identified patterns of somatic evolution observed in normal tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.