Abstract

A discrete-time replicator map is a prototype of evolutionary selection game dynamical models that have been very successful across disciplines in rendering insights into the attainment of the equilibrium outcomes, like the Nash equilibrium and the evolutionarily stable strategy. By construction, only the fixed-point solutions of the dynamics can possibly be interpreted as the aforementioned game-theoretic solution concepts. Although more complex outcomes like chaos are omnipresent in nature, it is not known to which game-theoretic solutions they correspond. Here, we construct a game-theoretic solution that is realized as the chaotic outcomes in the selection monotone game dynamic. To this end, we invoke the idea that in a population game having two-player-two-strategy one-shot interactions, it is the product of the fitness and the heterogeneity (the probability of finding two individuals playing different strategies in the infinitely large population) that is optimized over the generations of the evolutionary process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.