Abstract

In this paper, the navigational state estimation problem is investigated for a class of networked spatial-navigation systems with quantization effects, mixed time-delays, and network-based observations (i.e. complementary measurements and regional estimations). A decentralized moving horizon estimation approach, featuring complementary reorganization and recursive procedure, is proposed to tackle this problem. First, through the proposed reorganized scheme, a random delayed system with complementary observations is reconstructed into an equivalent delay-free one without dimensional augment. Second, with this equivalent system, a robust moving horizon estimation scheme is presented as a uniform estimator for the navigational states. Third, for the demand of real-time estimate, the recursive form of decentralized moving horizon estimation approach is developed. Furthermore, a collective estimation is obtained through the weighted fusion of two parts, i.e. complementary measurements based estimation, and regional estimations directly from the neighbors. The convergence properties of the proposed estimator are also studied. The obtained stability condition implicitly establishes a relation between the upper bound of the estimation error and two parameters, i.e. quantization density and delay occur probability. Finally, an application example to networked unmanned aerial vehicles is presented and comparative simulations demonstrate the main features of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.