Abstract
This article deals with the problem of decentralized resilient observer-based output-feedback control design for networked control systems (NCSs). The proposed scheme considers both network imperfections and security issues. It is assumed that the NCS is suffering from time-varying network-induced delays and time-varying transmission intervals. Moreover, data transmission is performed over a nonsecure network that suffers from a denial-of-service (DoS) attack. The DoS jamming attack has affected the network by the occurrence of consecutive packet dropouts, which result in attack-induced packet dropouts. Based on the fact that packet dropouts caused by DoS attacks naturally do not follow a specific statistical pattern, the attack-induced packet dropouts are modeled as an extension of time-varying intervals with no probability distribution. Sufficient conditions are provided to guarantee the uniformly globally exponential stability of the NCS in the form of linear matrix inequalities. Finally, the effectiveness and applicability of the proposed method are demonstrated by simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.