Abstract

This paper considers decentralized online optimization problems over a graph, where the allocated objective function of each agent is revealed over time and is only known for the corresponding agent in hindsight. Moreover, the graph is directed and time varying. In order to solve the problem, a decentralized stochastic subgradient online learning method is proposed over time-varying digraphs. However, the directed graph could generate an asymmetric weight matrix, which is not doubly stochastic matrix. To overcome this difficulty, we employ a weight-balancing technique. By choosing appropriate learning rates, we show that our proposed method can achieve logarithmic regret under strong convexity. Moreover, under convexity, the square-root regret can also be achieved. In addition, numerical simulations in sensor networks for solving the online distributed estimation problem illustrate the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.