Abstract

We extend the classic convergence rate theory for subgradient methods to apply to non-Lipschitz functions. For the deterministic projected subgradient method, we present a global $O(1/\sqrt{T})$ convergence rate for any convex function which is locally Lipschitz around its minimizers. This approach is based on Shor's classic subgradient analysis and implies generalizations of the standard convergence rates for gradient descent on functions with Lipschitz or Hölder continuous gradients. Further, we show a $O(1/\sqrt{T})$ convergence rate for the stochastic projected subgradient method on convex functions with at most quadratic growth, which improves to $O(1/T)$ under either strong convexity or a weaker quadratic lower bound condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.