Abstract

This paper introduces a novel decentralized control design procedure for an aeroelastic morphing wing. The control goal is active damping of this flexible system. The model is developed as a multi-agent system with inherent interconnections between the agents. The control system then takes advantage of the model structure and interconnections rather than relying on the entire system's model. This brings benefits, especially with a growing number of agents where the control design dimension remains low. Therefore, the proposed control design is especially suitable for morphing wings with a large number of actuation points. The result is presented in the Linear Matrix Inequalities (LMIs) form. A numerical example shows the application of the proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call