Abstract

PurposeBased on laser-range-finder (LRF) sensing, the control design of location and orientation stabilization for the mobile robot is investigated. However, the practical limitation of the LRF sensing is usually ignored in the control design, which leads to incorrect localization and unexpected control results. The purpose of this study is to design the fuzzy controller subject to the practical limitation on the LRF-based localization for a differentially driven wheeled mobile robot.Design/methodology/approachFirst, the Takagi–Sugeno (T-S) fuzzy model is derived from the polar kinematic model of a differentially driven mobile robot. Then, the fuzzy controller is designed to the derived T-S fuzzy kinematic model in accordance with the Lyapunov stabilization theorem. The derived Lyapunov stabilization conditions for the fuzzy control design are expressed as the linear matrix inequality (LMI) form and effectively solved by LMI tools. The practical limitation on the LRF-based localization is also expressed as the LMI form and simultaneously solved with the control design.FindingThe location and posture stabilization experiments are carried out on a mobile robot with LRF-based localization to prove the effectiveness of the proposed T-S fuzzy model-based control design. Furthermore, the ground truth experiment evaluates the accuracy of LRF-based localization.Originality/valueThe contribution of this study is to develop the fuzzy control law for a differentially driven wheeled mobile robot under the practical limitation on LRF-based localization. The proposed control design can be applied to other robots with practical limitations on the sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call