Abstract

In the medium voltage direct current (MVDC) shipboard grid, the inherent inertial support from the DC capacitors is too small to resist step changes or fluctuations from the high power pulse load and propulsion load, which results in lower DC voltage quality. This study proposes a decentralised control algorithm for the MVDC shipboard hybrid energy storage system (HESS) to enhance the onboard survivability. This algorithm adjusts the droop control coefficient based on the bus voltage change rate adaptively, meanwhile the voltage differential signal processing and filtering are implemented by the trace differentiator. In addition, the proposed algorithm also has state-of-charge (SOC) balancing and SOC recovery abilities between multiple groups of energy storage devices. The parameter selection principle are analysed, and a variety of working conditions are simulated and verified in PSCAD. Theoretical analysis and simulation show that, HESS can achieve good power distribution and SOC management performance without communication compared to fixed droop coefficient control strategies, and the dynamic characteristics of bus voltage have been significantly improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call