Abstract

AbstractThe high uncertainty of wind power output greatly affects the rapid reactive power optimization of power systems. This paper proposes a neural network‐based comprehensive reactive power optimization method for large‐scale wind power grids, effectively addressing the challenges of rapid reactive power optimization in power systems. Firstly, by constructing typical wind‐power‐load scenarios, the generalization ability of the neural network is improved. Then, focusing on the comprehensive reactive power optimization problem after integrating typical wind‐power‐load scenarios into the system, the improved Harris hawks optimization algorithm (HHO) is compared with the particle swarm optimization algorithm and traditional HHO algorithm, highlighting its advantages. Finally, HHO is utilized for solving, thereby constructing a comprehensive reactive power optimization strategy tag set. Furthermore, through deep fitting of the neural network between the power grid operating state and the comprehensive reactive power optimization strategy, the computational complexity and decision‐making time of reactive power optimization are reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.