Abstract

As the number of electric vehicles (EVs) grows, their electricity demands may have significant detrimental impacts on electric power grid when not scheduled properly. In this paper, we model an EV charging system as a cyber-physical system, and design a decentralised online EV charging scheduling algorithm for large populations of EVs, where the EVs can be highly heterogeneous and may join the charging system dynamically. The algorithm couples a clustering-based strategy that dynamically classifies heterogeneous EVs into multiple groups and a sliding-window iterative approach that schedules the charging demand for the EVs in each group in real time. Extensive simulation results demonstrate that our approach provides near-optimal solutions at significantly reduced complexity and communication overhead. It flattens the aggregated load on the power grid and reduces the costs of both the users and the utility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.