Abstract

AimsRegeneration of discarded human kidneys has been considered as an ideal approach to overcome organ shortage for the end-stage renal diseases (ESRDs). The aim of this study was to develop an effective method for preparation of kidney scaffolds that retain the matrix structure required for proliferation and importantly, differentiation of human adipose-derived mesenchymal stem cells (hAd-MSCs) into renal cells. Main methodsWe first compared two different methods using triton X-100 and sodium dodecyl sulfate (SDS) for human kidney decellularization; followed by characterization of the prepared human renal extracellular matrix (ECM) scaffolds. Then, hAd-MSCs were seeded on the scaffolds and cultured for up to 3 weeks. Next, viability, proliferation, and migration of seeded hAd-MSCs underwent histological and scanning electron microscopy (SEM) assessments. Moreover, differentiation of hAd-MSCs into kidney-specific cell types was examined using immunohistochemistry (IHC) staining and qRT-PCR. Key findingsOur results indicated that triton X-100 was a more effective detergent for decellularization of human kidneys compared with SDS. Moreover, attachment and proliferation of hAd-MSCs within the recellularized human kidney scaffolds, were confirmed. Seeded cells expressed epithelial and endothelial differentiation markers, and qRT-PCR results indicated increased expression of platelet and endothelial cell adhesion molecule 1 (PECAM-1), paired box 2 (PAX2), and E-cadherine (E-CDH) as markers of differentiation into epithelial and endothelial cells. SignificanceThese observations indicate the effectiveness of decellularization with triton X-100 to generate suitable human ECM renal scaffolds, which supported adhesion and proliferation of hAd-MSCs and could induce their differentiation towards a renal lineage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.