Abstract

Based on the Electromagnetically-Induced-Transparency (EIT) effect of cesium Rydberg atoms, the dispersion of the probe light will experience a drastically change while the absorption is diminished, as the frequency of it is resonated with that of the corresponding atomic transition. In this case, as the light pulse propagates in the atomic medium, the group velocity of the pulse will be slowed. In the cesium atoms 3-ladder-level system (<inline-formula><tex-math id="M2">\begin{document}$ 6{\rm S}_{1/2}\rightarrow6{\rm P}_{3/2}\rightarrow49{\rm D}_{5/2} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20210102_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20210102_M2.png"/></alternatives></inline-formula>),the frequency of the probe light is locked at the resonance transition of <inline-formula><tex-math id="M3">\begin{document}$ 6{\rm S}_{1/2}\rightarrow6{\rm P}_{3/2} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20210102_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20210102_M3.png"/></alternatives></inline-formula>, while the transmission signal of 852 nm probe light is measured by scanning the coupling light frequency near the transition of <inline-formula><tex-math id="M4">\begin{document}$ 6{\rm P}_{3/2}\rightarrow49{\rm D}_{5/2} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20210102_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20210102_M4.png"/></alternatives></inline-formula>, We observed the EIT phenomenon and explored the relationship between the power of coupling laser and linewidth of the EIT signal. The experimental results show that the linewidth of the EIT signal is proportional to the power of the coupling laser. Then under the two-photon resonance condition, the deceleration of the probe light pulse caused by the steep change of the dispersion curve is observed. We also systematically investigate the influences of coupling optical power and temperature of vapor cell on the slowing down of light pulse. The experimental results show that the weaker the coupled light was, the longer the delay time; and the higher the temperature of the atomic gas chamber was, the more obvious the deceleration effect would be observed, those of which are consistent with the theoretical calculations. The investigation of the deceleration of optical pulses based on the Rydberg Electromagnetically-Induced-Transparency is important for understanding the coherence mechanism of 3-ladder-level system and some potential applications, such as in Rydberg-atom-based electric field metrology. This research provides a new tool for the measurement of pulsed microwave electric field through the optical pulse deceleration effect.

Highlights

  • Change of EIT signal with coupling power: (a) EIT signals obtained under different coupling power; (b) EIT line width and peak intensity vary with coupling power

  • 2) (Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China) ( Received 15 January 2021; revised manuscript received 4 March 2021 )

Read more

Summary

No coupling With coupling

图 2 理论得到归一化后的色散和吸收曲线 (a) 打 开 (虚 线 ) 和 关 上 (实 线 ) 耦合光时原子系综的色散 ; (b) 打 开 (虚线) 和关上 (实线) 耦合光时原子系综对探测光的吸收. 电光强度调制器 (EOM) 的 RF 端输入一个高 斯型脉冲对探测光进行调制后, 探测光脉冲经过偏 振分光棱镜 (PBS), 反射光脉冲由 PD1 探测, 作为 参考信号, 透射光脉冲与强耦合光在铯原子气室中 共线反向传输, 使得原本被吸收的弱探测光能够透 过原子介质, 经过反射后被 PD2 探测. 表明, EIT 窗口的宽度强烈地依赖于耦合光的强度 γEIT ∝ |Ωc|2 [28], 其中 γEIT 为 EIT 透明窗口的线宽, Ωc 为耦合光的拉比频率. 实验中, 保持弱探测光 (852 nm) 的功率不变, 将弱探测光 (852 nm) 的频 率调节在 Cs 原子 6S1/2(F = 4) → 6P3/2(F ′ = 5)的 共振跃迁线上, 强耦合光 (510 nm) 在 6P3/2(F ′ = 5) → 49D5/2的能级跃迁频率附近扫描, 观察 EIT 透射峰、EIT 线宽随耦合光功率的变化. 和图 4(b) 所示, 在一定范围内, 随着耦合光的增强, EIT 透射峰强度随之变强, EIT 线宽也随之变宽. 图 3 实验装置示意图 (EOM 为强度型电光调制器; λ/2 为二分之一波片; PBS 为偏振分束棱镜; Cell 为铯原子气室; 852 HR/ 510 HT: 852 nm 高反 510 nm 高透镜; PD 为探测器) Fig. 3. (EOM, electro-optic intensity; λ/2 , half-wave plate; PBS, polarization beam splitter; Cell, Cesium vapor cell; 852 HR/510 HT, Dichroic beam splitter; PD, photoclectric detector) Schematic diagram of the experimental setup. (EOM, electro-optic intensity; λ/2 , half-wave plate; PBS, polarization beam splitter; Cell, Cesium vapor cell; 852 HR/510 HT, Dichroic beam splitter; PD, photoclectric detector)

EIT peak intensity
Experimental Theoretical
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.