Abstract

The decay equation, which determines the correlation length and the period of the pair correlation function of a fluid at large distances, is discussed using the Ornstein–Zernike equation when the direct correlation function vanishes rapidly at large distances. The decay equation is solved numerically using the exact hard sphere and sticky hard sphere fluid results from the Percus–Yevick approximation. In the case of the hard sphere fluid, oscillatory decay is always obtained. For the sticky hard sphere fluid, we obtain a locus both in the pressure–temperature plane and the density–temperature plane such that the decay is monotonic inside and oscillatory outside the locus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.