Abstract
We construct a density functional theory (DFT) for the sticky hard sphere (SHS) fluid which, like Rosenfeld's fundamental measure theory (FMT) for the hard sphere fluid [Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989)], is based on a set of weighted densities and an exact result from scaled particle theory (SPT). It is demonstrated that the excess free energy density of the inhomogeneous SHS fluid Φ(SHS) is uniquely defined when (a) it is solely a function of the weighted densities from Kierlik and Rosinberg's version of FMT [E. Kierlik and M. L. Rosinberg, Phys. Rev. A 42, 3382 (1990)], (b) it satisfies the SPT differential equation, and (c) it yields any given direct correlation function (DCF) from the class of generalized Percus-Yevick closures introduced by Gazzillo and Giacometti [J. Chem. Phys. 120, 4742 (2004)]. The resulting DFT is shown to be in very good agreement with simulation data. In particular, this FMT yields the correct contact value of the density profiles with no adjustable parameters. Rather than requiring higher order DCFs, such as perturbative DFTs, our SHS FMT produces them. Interestingly, although equivalent to Kierlik and Rosinberg's FMT in the case of hard spheres, the set of weighted densities used for Rosenfeld's original FMT is insufficient for constructing a DFT which yields the SHS DCF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.