Abstract

In this paper we have developed a theory for the decay of a quantum dot doped in a two-dimensional metallic photonic crystal consisting of two different metallic pillars in an air background medium. This crystal structure forms a full two-dimensional photonic band gap when the appropriate pillar sizes are chosen. The advantage of using two metals is that one can easily control the density of states and optical properties of these photonic crystals by changing the plasma energies of two metals rather than one. Using the Schrödinger equation method and the photonic density of states, we calculated the linewidth broadening and the spectral function of radiation due to spontaneous emission for two-level quantum dots doped in the system. Our results show that by changing the plasma energies one can control spontaneous emission of quantum dots doped in the metallic photonic crystal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call