Abstract

We have derived a modified finite-difference frequency-domain (FDFD) algorithm for two-dimensional (2-D) metallic photonic crystal (MPC) analysis. Using this method, the numerical results for the transverse-electric (TE) and transverse-magnetic (TM) modes in square and triangular lattices are in excellent agreements with those from other method. Then the correspondence of the band gaps between a unit cell and a supercell is demonstrated. Furthermore, by comparing the field distributions of the defect modes in a point defected MPC and a point defected dielectric photonic crystal (DPC), it is found that the defect MPC has a higher degree of localization, which means that MPC is preponderant for resonator and waveguide applications in millimeter wave and sub-millimeter wave bands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call