Abstract
The kinetics of transients formed under photoexcitation of benzophenone (B) dissolved in three different polymers was studied by ns laser flash photolysis. These polymers were the soft rubbers poly (ethylene-co-butylene) (EB), polystyrene block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) and hard polystyrene (PS). We monitored the decay kinetics of triplet state (3)B(*) and of ketyl radicals BH(●). We observed exponential decay of (3)B(*) and two-stage decay kinetics of BH(●) in EB. The first stage is a fast cage recombination of a radical pair (BH(●), radical of polymer R(●)). The second slow stage of BH(●) decay follows the second-order law with a relatively high rate constant, which corresponds to recombination of BH(●) in a homogeneous liquid with a viscosity of only ~0.1 P (about five times of 2-propanol viscosity). Application of a magnetic field (MF) of 0.2 T leads to deceleration of both stages of BH(●) decay in EB by approximately 20%. Decay kinetics of both transients were observed in SEBS. There was no MF effect on BH(●) decay in SEBS. We only observed (3)B(*) in PS. Decay kinetics of (3)B(*) in this case were described as polychromatic dispersive first-order kinetics. We discuss the effects of polymer structure on transient kinetics and the MF effect.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have