Abstract

A Physically Unclonable Function (PUF) is a unique and stable physical characteristic of a piece of hardware, which emerges due to variations in the hardware fabrication processes. Prior works have demonstrated that PUFs are a promising cryptographic primitive that can enable secure key storage, hardware-based device authentication and identification. So far, most PUF constructions have required an addition of new hardware or an FPGA implementation for their operation. Recently, intrinsic PUFs, which can be found in commodity devices, have been investigated. Unfortunately, most of them suffer from the drawback that they can only be accessed at boot time. This paper focuses on a new class of run-time accessible, decay-based, intrinsic DRAM PUFs in commercial off-the-shelf systems, which requires no additional hardware or FPGAs. In order to enable secure key storage using DRAM PUFs, this work presents a new Helper Data System (HDS) specifically tailored to the properties of the decay process inherent to DRAM cells. The decay-based DRAM PUF and the new HDS are evaluated on commodity off-the-shelf devices to demonstrate their practicality. Furthermore, a novel lightweight protocol is presented that allows for mutual authentication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call