Abstract
We prove decay and scattering of solutions of the nonlinear Schrödinger equation (NLS) in ℝ with pure power nonlinearity with exponent 3 < p < 5 when the initial datum is small in Σ (bounded energy and variance) in the presence of a linear inhomogeneity represented by a linear potential that is a real‐valued Schwarz function. We assume absence of discrete modes. The proof is analogous to the one for the translation‐invariant equation. In particular, we find appropriate operators commuting with the linearization. © 2014 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.