Abstract

Abstract In the present paper, we consider only the ideal elastic behavior, neglecting the dissipation associated with the atomic rearrangements. Under these conditions, the decagonal quasicrystal plate bending problems have been discussed. The Stroh-like formalism for the bending theory of decagonal quasicrystal plate is developed. The analytical solutions for problems of decagonal quasicrystal plate with elliptic hole subjected to out-of-plane bending moments are obtained directly by using the forms. The resultant bending moments around the hole boundaries are also given explicitly. When the phonon–phason coupling is absent, the results reduce to the corresponding solutions for the isotropic elastic plates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.