Abstract

Oceanic uptake of CO2 can mitigate climate change, but also results in global ocean acidification. Ocean acidification-related changes to the marine carbonate system can disturb ecosystems and hinder calcification by some organisms. Here, we use the calcification response of planktonic foraminifera as a tool to reconstruct the progression of ocean acidification in the California Current Ecosystem through the twentieth century. Measurements of nearly 2,000 fossil foraminifera shell weights and areas preserved in a marine sediment core showed a 20% reduction in calcification by a surface-dwelling foraminifera species. Using modern calibrations, this response translates to an estimated 35% reduction in carbonate ion concentration, a biologically important chemical component of the carbonate system. Assuming other aspects of the carbonate system, this represents a 0.21 decline in pH, exceeding the estimated global average decline by more than a factor of two. Our proxy record also shows considerable variability that is significantly correlated with Pacific Decadal Oscillation and decadal-scale changes in upwelling strength, a relationship that until now has been obscured by the relatively short observational record. This modulation suggests that climatic variations will play an important role in amplifying or alleviating the anthropogenic signal and progression of ocean acidification in this region. Ocean acidification in the California Current Ecosystem was twice the global average during the past century and influenced by decadal climate variations, according to a record of the calcification rate of planktonic foraminifera from the Santa Barbara Basin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.