Abstract
The present paper proposes a non-contact ultrasonic testing method for the debonding inspection of metal-based composite structures, utilizing an improved electromagnetic acoustic transducer (EMAT). The enhanced EMAT incorporates a carbonyl iron powder coil backplate and a small butterfly coil to enhance the detecting ability for interfacial bonding. A two-dimensional finite element model is developed to quantify the effectiveness of the carbonyl iron powder coil backplate on increasing the eddy current density and the magnetic flux density in the specimen. An experimental setup was designed using the Ritec SNAP 5000 and the improved EMATs to examine an aluminium-epoxy resin composite structure. Ultrasonic C-scan images of the specimen's bonding interface were obtained from the experiment. Both simulation and experimental results show that carbonyl iron powder coil backplates can increase the efficiency of the EMATs. By investigating the influence of echo number on debonding detection, it was revealed that employing higher-order echoes and utilizing carbonyl iron powder as the coil backplate can enhance the debonding detection capability. The C-scan imaging results indicate that the utilization of high-order echoes enhances imaging quality, and the employment of high-quality miniaturized EMATs enhances the capability for quantitative analysis of debonding defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.