Abstract

Sandwich beam specimens, recently developed for the study of facing/core debond fracture, were analyzed using the finite element method. Peel fracture was approached using a modified double cantilever beam (DCB) sandwich specimen with a precrack between the facing and core, while shear fracture employed a modification of the ASTM block shear test to include a facing/core precrack. Complex and conventional stress intensity factors were calculated for bimaterial cracks located between facing and bondlayer and bondlayer and core over a large range of core moduli. Overall, much larger stress intensity factors were observed for an interfacial crack between the facing and bondlayer than for a crack between the bondlayer and core for both types of specimens. Crack kinking analysis of the DCB specimen revealed that the debond tends to remain interfacial for stiff core materials, but may deflect into the core for compliant core materials. In shear loading of a debonded sandwich beam it was demonstrated that crack kinking is possible for any core material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.