Abstract

Deblurring images captured in dynamic scenes is challenging as the motion blurs are spatially varying caused by camera shakes and object movements. In this paper, we propose a spatially varying neural network to deblur dynamic scenes. The proposed model is composed of three deep convolutional neural networks (CNNs) and a recurrent neural network (RNN). The RNN is used as a deconvolution operator on feature maps extracted from the input image by one of the CNNs. Another CNN is used to learn the spatially varying weights for the RNN. As a result, the RNN is spatial-aware and can implicitly model the deblurring process with spatially varying kernels. To better exploit properties of the spatially varying RNN, we develop both one-dimensional and two-dimensional RNNs for deblurring. The third component, based on a CNN, reconstructs the final deblurred feature maps into a restored image. In addition, the whole network is end-to-end trainable. Quantitative and qualitative evaluations on benchmark datasets demonstrate that the proposed method performs favorably against the state-of-the-art deblurring algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call