Abstract

In this study, Monte Carlo simulations were used to calculate the full-energy peak efficiency of a p-type coaxial high-purity germanium (HPGe) detector. The HPGe detector was modeled using MCNP6 and Geant4, and the thickness of the dead layer of germanium crystals was estimated for an accurate simulation. The dead layer was divided into front and side components, where a point source and a Marinelli beaker source were used to estimate each dead layer thickness. The model was validated by comparing the simulated as well as experimental results for the standard sources of cylindrical and Marinelli beakers. The Geant4 results and experimental results matched up to 4% in the 59.54–1836.05 keV energy range, while MCNP6 matched up to 6% when adjusted for coincidence summing effects. HPGe detector modeled in Monte Carlo simulations can be utilized for experimental validation and experimental setup prior to using actual HPGe detectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call